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Finite Size Scaling in Quantum Mechanics
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The finite size scaling ansatz is combined with the variational method to extract information about critical
behavior of quantum Hamiltonians. This approach is based on taking the number of elements in a complete
basis set as the size of the system. As in statistical mechanics, the finite size scaling can then be used directly
in the Schrdinger equation. This approach is general and gives very accurate results for the critical parameters,
for which the bound-state energy becomes absorbed or degenerate with a continuum. To illustrate the
applications in quantum calculations, we present detailed calculations for both short- and long-range potentials.

I. Introduction [I. Finite Size Scaling

In statistical mechanics, the singularities in thermodynamic  In statistical mechanics, the finite size scaling method (FSS)
functions associated with a critical point occur only in the allows a systematic way to extract the critical behavior of infinite
thermodynamic limit, when all the dimensions of the system systems from studies done on finite systémslf in the
under consideration tend to infinity. Strictly speaking, there thermodynamic limitN — o, a quantityK develops a singularity
are no phase transitions in a finite system at nonzero temper-as a function of the temperatutein the form
ature, and yet, experiments as well as numerical calculations
all use finite systems. To address this problem, the finite size KM = lim KM~ |T— T,/ (1)
scaling method was formulated by Fisheand others to N—eo N ¢
extrapolate information obtained from a finite system to the

thermodynamic limit. and in particular for the correlation length
In quantum mechanics, when using variation methods, one
encounters the same finite size problem in studying the critical EM=Ilm&M~|T—-TJ" )
N—c0

behavior of a quantum Hamiltoniad(4,,...Ak) as a function
of its set of parametefsii}. In this context, critical means the . ) )
values of{ 4} for which a bound-state energy is nonanalytic. then the FSS ansatz assumes the existence of scaling function
In many cases, as in this study, this critical point is the point Fx such that
where a bound-state energy becomes absorbed or degenerate
with a continuum. In this case, the finite size corresponds not K(T) ~ K(T)F (i) 3)
to the spatial dimension but to the number of elements in a (M
complete basis set used to expand the exact wave function of a
given Hamiltonian. where Fk(y) is an analytical function. Since the FSS ansatz,
Recently, we used the finite size scaling and phenomenologi- €q 3, should be valid for any quantity that exhibits an algebraic
cal renormalization equations for calculations of the critical singularity in the bulk, we can apply it to the correlation length
charges for twd-® and three-electron systefisThis approach & itself. Thus, the correlation length in a finite system should
is based on taking the lowest eigenvalues of a quantum have the forrf
Hamiltonian as the leading eigenvalues of a transfer matrix of
a classical pseudosystem. W ~ N¢§(N1’”|T )| 4)
In this paper we will assume that there exists a scaling
function for the truncated mean value of a given operator, and The gpecial significance of this result was first realized by
with the help of the HellmannFeynman theorem we can obtain  \jightingale? who showed how it could be reinterpreted as a
a direct finite size scaling approach to the Sciimger equatiori. renormalization group transformation of the infinite system. The

This approach is general and can be used to study Cri'ﬁica|phenomeno|ogica| renormalization (PR) equation for finite
behavior of a quantum Hamiltonian as a function of its systems of sizedl andN' is given by

parameters. To illustrate this approach, we include detailed

calculations for the critical parameters for two cases with £ E(T)
qualitatively different behavior: one with short-range interaction, NN (5)
the Yukawa potential, and one with a long-range interaction, N N

the inverse power law potential.

and has a fixed point &NN). 1t is expected that the succession
t Purdue University. of points {T™Y} will converge to the truel. in the infinite
* Universidad Nacional de @doba. size limit.
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In order to apply the FSS to quantum mechanics problems, state eigenvector. In this representation, the expectation value

let us consider the following Hamiltonian of the form of any operatolO at orderN is given by
N
H=H,+V 6
0V © oY = 5 &) al(?) O, (1)
nm

whereHy is A-independent an¥l; is theA-dependent term. We

are interested in the study of how the different properties of whereOnm are the matrix elements @ in the basis set®y}.
the system change when the valuelofaries. In this study a  In general, the mean valu®LUis not analytical af. = 4, and
critical point 4. will be defined as a point for which a bound We can define a critical exponento, by the relation

state becomes absorbed or degenerate with a continuum. 1Yo for 4t :
Without loss of generality, we will assume that the Hamil- DG~ @ —=4) or c (12)

tonian, eq 6, has a bound stdigfor 4 > A, which becomes In statistical mechanics, the singularities in thermodynamic

eqL_JaI to zero aﬂ = 4e As in statistical mechan|CS,_we €an functions associated with a critical point occur only in the
define some critical exponents related to the asymptotic behav'orthermodynamic limit. In the variation approach singularities

of different quantities near the cr'lt.|cal point. In particular, for ;. the different mean values will occur only in the limit of
the energy we can define the critical exponenas infinite basis functions.

N As in the FSS ansatz in statistical mechanicsye will
E,~(A—2)% for A— 24, (7) assume that there exists a scaling function for the truncated
magnitudes such that

For general potentials of the fork), = 1V, Simori® showed
that the critical exponent is equal to 1 if and only iH (1)
has a normalizable eigenfunction with eigenvalue equal to zero.
The existence or absence of a bound state at the critical point
IS rgla_lted to the type Of. singularity in the energy. Using Now we are in a position to obtain the critical parameters by
statistical mechanics terminology, we can associate “first-order defining the following function
phase transitions” with the existence of a normalizable eigen-
function at the critical point. The absence of such a function |n([®§1\1)/[®g\r))
could be related to “continuous phase transitions”. Ag(ANN) = —r————
In quantum calculations, the variation method is widely used In (N/N)
to approximate the solution of the ScHioger equation. To At the critical point, the mean value dependsi@s a power
obtain exact results, one should expand the exact wave functionjaw, [0~ N/, thus, one obtains an equation for the ratio
in a complete basis set and take the number of basis functionsof the critical exponents
to infinity. In practice, one truncates this expansion at some
orderN. In the present approach, the finite size corresponds
not to the spatial dimension, as in statistical mechanics, but to
the number of elements in a complete basis set used to expand
the exact eigenfunction of a given Hamiltonian. For a given Which is independent of the values®fandN'. Thus, for three

O ~ OEFoNIZ — 4") (13)

with a different scaling functiofro for each different operator
but with a unique scaling exponent

(14)

AN = ’% (15)

complete orthonormal-independent basis sgbn}, the ground-  different valuesN,N" and N the curves defined by eq 14
state eigenfunction has the following expansion intersect at the critical point
Ag(ANN) = Ag(A;N",N 16
11;1 — zan(l)q)n (8) O( C ) O( c ) ( )
n In order to obtain the critical exponemt which is associated

with the energy, we can take = H in eq 15 withuo = a,
wheren represents the set of quantum numbers. In order to

approximate the different quantities, we have to truncate the XA NN (17)
series, eq 8, at ordé\. Then the Hamiltonian is replaced by v H e
M(N) x M(N) matrix H ™, with M(N) being the number of

elements in the truncated basis set at ofderBy use of the and by using the HellmanrFeynman theorertf, we obtain

standard linear variation method, thigh-order approximation JE, H A
for the energies are given by the eigenvallﬂe’ém} of the i % D: %D (18)
matrix H OV, -

Taking O = aV,/04 in eq 15 gives an equation foo.(— 1)/v
EN = min{ A™} (9) that, together with eq 17, gives the exponemtand v.
{i} The FSS equations are valid only as asymptotic expressions,
N — oo, but with a finite basis set, unique values/ef o, and

The corresponding eigenfunctions are given by v can be obtained as a succession of values as a functin of
N"andN". The relation betweeN, N' andN" was extensively
M(N) studied in FSS in statistical mechanfcand it is known that
piV = z ado, (10) the fastest convergence is obtained when the difference between
n

these numbers is as small as possible. In this study we took
AN = 1, and when there are parity effects, we uddt= 2. In
where the coefficienta!™ are the components of the ground-  order to obtain the extrapolated values 69, o™, ands™ at
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N — oo, we used the algorithm of Bulirsch and St&ewith N'
=N+ ANandN' =N — AN. This algorithm was also studied
in detail and gives very accurate results for both statistical
mechanics probler$as well as electronic structure critical
parameter$. 6

I1l. Numerical Calculations

To illustrate the applications of the FSS method in quantum
mechanics, two cases with qualitatively different behavior near
the critical point have been studied: one with short-range
interaction, the Yukawa potential, and one with a long-range
interaction, the inverse power law potential. In both cases the
potential is spherically symmetric, and therefore, the critical

behavior can be studied for zero and nonzero angular momen-,

tum.

A convenient orthonormal basis set that can be used in both

cases is of the form

1

A+ DN+ 2)

whereL?(r) is the Laguerre polynomial of degreeand order
2 andY; () are the spherical harmonic functions of solid angle
9_15

D, (1 Q) = e LAY Q) (19)

Serra et al.

TABLE 1: Comparison of the Critical Parameters 4., o, and
v for the Short-Range Yukawa Potential forl =0 and| =1

evenN oddN ref
=0
Ac 0.8399039(1) 0.8399039(1) 0.839908
o 2.00000(2) 1.999995(5) 2 (ex&ct
v 0.9999(2) 0.9999(5)
=1
Ac 4.540980(3) 4.540979(1) 4,541
o 0.9999(3) 0.9998(2) 1 (exayt
v 0.501(1) 0.501(1)

aFrom ref 26.° From ref 16.

In order to linearize the Hamiltonian in the external parameter,
we perform the following scaling transformation

H
r—or; H—— (24)
o2
With 4 = 1/o the Hamiltonian takes the final form
—I
H ()= —3v2 - 7% (25)

This Hamiltonian has bound states for large valued,cdnd

In this basis set, one has to calculate the lowest eigenvaluethe exact value of the critical exponemtis a. = 2 for states

and eigenvector of the finite Hamiltonian matrix. The matrix

with zero angular momentum awnd= 1 for states with nonzero

elements of the kinetic energy operator can be calculated angular momenturtf

analytically, and therefore, the problem reduces to calculation
of the matrix elements of the particular potential. Now, in order
to obtain the numerical values fag, o, andv, we can use eqgs
16—18 or we can simply define the following function

Ay ENN)
Ap (ANN) = Agy 15 (4NN

T, (ALNN) = (20)

which is also independent of the valued\b&dndN' at the critical
point A = A.. Plotting I',(4;N,N') as a function ofA gives a
family of curves with an intersection at. At the pointd = A
one can read the critical exponenat

o =T,(LNN) (21)

and from eq 17 the critical exponentis readily given by

o

~ An GoNN) (22)

v

A. Short-Range Potentials. There are many rigorous results
known about the critical behavior of short-range one-body
potentials. Klaus and Siméhconsider a family of Schidinger
operators;-V2 + AV, with coupling constant and short-range
potentialV. Their results address two general questions. (i) Is
the eigenvalu&(1) analytic atl = Ac? (ii) What is the leading
order of the expansion i (— A¢)*?

In this section we will analyze these two questions for the
Hamiltonian of the screened Coulomb potential. In atomic units
the Hamiltonian can be written as

H

(23)

It is well-known that the perturbation expansiondnaround
the Coulombic limit,c = 0, is asymptotic with zero radius of
convergenceé’

We used the finite size scaling equations, eqs 28, in order
to obtain the pseudocritical™, o™, ands™. Owing to parity
effects, we have to takAN = 2. The extrapolated results for
both states with angular momentum= 0 and| = 1 are
summarized in Table 1. The behavior of the ground-state
energy, EgN), as a function ofl for different values ofN is
shown in Figure 1a. Fdr= 0, the energy curve goes smoothly
to zero as a function af but the second derivative function
develops a discontinuity in the neighborhood of the critical point,
e = 0.8399. This behavior is different from that bf= 1
results, where the energy curve bends sharply to zero at the
critical point, Ac = 4.5409, as shown in Figure 1b. As one
should expect, there is a discontinuity in the first derivative as
a function ofA.

For the casé = 0, the eigenfunction is not normalizable at
A=A ltisinteresting to note that for the'Htan Hamiltonian,
another potential with an exponential decay and exact solution
for the ground staté® the expansion coefficients of the wave
function have the asymptotic form

a(h)~ @ — A" for A—a.t (26)
independent of the basis set and the value.oft seems that
this result is general and suggests that there is a unique critical
exponent for the expansion coefficients. We assume that, with
o Z= 1, there is a unique critical exponemt defined by

a,(A) ~y s (A — A" for A—2." (27)
Assuming this is a universal behavior for the coefficiefdas
it is possible to show, by use of the expansion, eq 8, in the
Hellmann-Feynman theorem, that, = (a0 — 1)/2.

To verify these results, parts a and b of Figure 2 show the
behavior of the leading coefficiens§” anda{’™ as a function
of . The curves bend to zero &, and in the limit ofN — oo
bothay anda; take the value zero for all below .. Figure 3
show the extrapolated value for the critical exponeras a
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Figure 1. Variational energy for the Yukawa potential as a function
of 4 for N = 10, 20, 30, ..., 100: (a) for the ground-state energy with
| = 0; (b) for the state with angular momenturs 1. The value of the
extrapolatedi. is also shown by an arrow.
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Figure 2. Expansion coefficients for the ground-state wave function
of the Yukawa potential as a function dffor N = 10, 20, 30, ..., 100:
(a) leading coefficiensl”; (b) second coefficiena{™.

function of 1N for the first four expansion coefficients= 0,
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Figure 3. Critical exponen]uﬁ]N) as a function of M forn=0, 1, 2,

3. Open circles represed = 50, 60, 70, 80, 90, 100, and the
extrapolated value of the critical exponent is shown by a dot.
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Figure 4. Variational energy for the ground state of the long-range
potential (eq 29 in the text) as a function ofor N = 10, 20, 30, ...,
100. The value of the extrapolatédis also shown by an arrow.

04

for the casen = 0. Our conjecture is that the exact valueuaf
is equal to/, for all n; that is,u is a “universal exponent” for
the coefficients independent of the valuerobr the basis set.

B. Long-Range Potentials. For the two-electron Coulomb
problem, a long-range two-body potential, the ground state is
degenerate with the continuum with a critical exponent 1
and has a normalizable eigenfunction at the critical p¥iiihe
critical point is the minimum value of the nuclear charge
necessary to bind two electrons and is about 0.911 16. Stillinger
discussed another family of long-range potentials that can be
solved exactly® For the ground state of the potentilr) =
—3/322 + bl(8Vr) — c/(8r), he showed that there exists a
normalizable eigenfunction at the critical point and that the
critical exponent it = 1.

To illustrate the applications of the finite size scaling method
for long-range potentials, we investigated the following potential

1.
Vi =7+

28
28)

For this potential there is no parity effect, and we choadé

= 1. The finite size scaling results are qualitatively very similar
to the results of the two-electron atofsVe have found that
the energy curves as a function/obends over sharply dt to
become degenerate with the continuum. This behavior of the
ground state for different values dfis shown in Figure 4. In
virtue of this behavior, we expect that the first derivative of the

1, 2, 3. The extrapolated values are 0.4865, 0.4865, 0.4477,energy with respect té will develop a steplike discontinuity

and 0.4233, respectively. The larger the valua,ahe larger

at Ac. The first derivative is shown in Figure 5. The

is the numerical error, so we expect the most accurate result isextrapolated values df. anda are listed in Table 2.
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1.0 —T T T of the critical point. This type of behavior resembles a
: “continuous phase transition”. For the ground state of the
0.8 inverse power law potential, the critical exponent= 1, the
wave function is normalizable at= A, the energy curves bend
< 06 over sharply atl; to become degenerate with the continuum,
= and the first derivative develops a steplike discontinuityat
::{ 0.4 which resembles a “first-order phase transition”.
It is worth noting that we assumed that for the expansion
0.2 coefficients of the wave function there is a unique “universal”
s critical exponent. For the Yukawa and théltém potentialg:
0.0 N Al/. P = 1, and in generak = (o - 1)/2, which is related to the critical
0.4 0.5 0.6 0.7 0.8 exponent on the energy. This assumption needs further
A verification, but numerical results in this study indicate that this

Figure 5. First derivative of the ground-state energy of the long-range assumption is general and correct.
potential (eq 29 in the text) as a functionbfor N = 10, 20, 30, ...,

100. The value of the extrapolatédis also shown by an arrow. Acknowledgment. We are delighted to dedicate this paper
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